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Abstract

We used the discrete wavelet transform to approximate an image at a lower resolution as pre-
processing for object recognition using an optical correlation technique. We cross-correlated the
low-resolution image with a similarly processed image containing an object of interest. Then, we
synthesized the cross-correlation result to the resolution of the original image. Using this
approach, we avoided cross-correlating an image multiple times and passing information between
levels of an image representation such as in a pyramid representation. We showed that we could
recognize objects that were approximated at 1/4 the original resolution using binary phase-only
correlation filters. Although discrimination decreased when compared to processing at the original
resolution, it appeared that the results were useful for object recognition. We chose wavelets
based on their impulse response of our system, and found that different wavelet filters gave differ-
ent autocorrelation peak, and SNR values. Our study gave insight into the performance that may

be expected when performing pattern recognition on images approximated by the wavelet trans-

form.
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1.0 Introduction

The application of optical correlators is often limited by the number of pixels in a spatial light
modulator (SLM). Many applications require at least 512 x 512 pixels, which is larger than most
SLMs, and applications requiring more pixels are common. One approach to this problem has
been to process a large image at lower resolutions beginning with the lowest resolution. In this
way, the image is decomposed into a pyramid re:presentation.l’2 A low-resolution version of an
image may be used to find regions of interest in an image that gives only the approximate identity
and location of a object. To determine these parameters more precisely, information must be
passed from the lower-resolution version of the image to a higher-resolution version that is pro-

cessed further. This procedure is repeated until the highest resolution of the pyramid is reached.

Because the resolution of a pixelated SLM is fixed, only a constant size image can be pro-
cessed. Therefore, only a portion of an image can be processed as its resolution is increased.
Using this technique an optical correlator has been used to process a pyramid representation of an
image.3 In a binary version of this method, input images were preprocessed with morphological
filters to approximate low-pass filters to generate a binary image pyramid.4 In addition, wavelet

approximations of images at lower resolution have also been considered using this approach.5

The main disadvantage of the pyramid approach is the need to process an image multiple
times. In addition, if multiple areas of interest exist in a low-resolution image, these areas may
need to processed independently if they are not in the vicinity of each other. Therefore, valuable
processing time may be spent if multiple potential objects exist in an image. What is needed is an
approach where all the necessary information about an object is in a low-resolution version of an
image; then, the image may be processed only once. Such a method could allow a significant

decrease in processing time by, in effect processing compressed images.

In this work, we examined cross-correlation operations on a low-resolution image that was
approximated by the discrete wavelet transform (DWT). After cross-correlation with a similarly
processed image containing an object of interest, we synthesized the cross-correlation result to the
resolution of the original image. The schematic diagram of our approach is shown in Fig. 1. Using
this approach, we performed only one correlation operation and avoided passing information

between levels of an image representation.
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FIGURE 1. Schematic diagram of correlation process.

Because we used an approximated image, the choice of filter bank for wavelet representation
can be crucial. For example, in image compression applications, methods to select filter banks are
often based on one or more parameters such as, maximum power,6 minimum emropy,7 or impulse
and step rcsponsca.8 In this work, we used the latter approach in evaluating filter banks. Specifi-
cally, we used the impulse response of the system in Fig. 1, where the autocorrelation was per-
formed on the approximated signal. We evaluated filter banks by measuring parameters such as
the signal-to-noise ratio (SNR), peak-to-correlation energy (PCE), and shift variance, at the out-
put of the system. Although we tried a limited number of filter banks, our approach provided some

insight into the level of performance we can expect from our system.

In the following sections we described the multiresolution representation of an image, the
approximation of an image at a lower resolution, and synthesis of a correlation result to a higher
resolution using wavelet filter banks. We discussed filters for our approach and evaluated them
using their impulse response. Finally, we compared auto- and cross-correlation results between

images processed at full resolution and those processed at 1/4 the original resolution.

2.0 Multiresolution Processing

2.1 Multiresolution representation

The wavelet transform can be interpreted as a multiresolution representation of an image. The

wavelet representation is constructed based on the difference of information at two successive res-



olutions.? In the following discussion, we generally discussed the wavelet representation in terms

of one-dimension, but all of our equations can be easily generalized to two dimensions.

Using the wavelet representation the approximation of a signal f{x) at the resolution 2 is
referred to as A,j {f(x)} where Ayj is a projection operator that approximates the function f(x) and
j < 0. The signal A; {f(x)}=f(%), is the original signal at the highest resolution, and A;,2{fx)}, A},
4{f)}, etc. are lower resolution versions of f{x). The operator Ayj is an orthogonal projection on a
vector space, and A,i{f(x)} is not modified if we approximate it again at resolution 2/, Further-
more, the approximation of a signal at a resolution 2 contains all the necessary information to
compute the signal at resolution 2, Finally, the approximation operation is similar at all resolu-

tions.

2.2 Approximation of image at lower resolution

The DWT can be implemented in one dimension in an efficient manner by passing a signal
through identically structured processing stages where each successive stage processes half the
number of bytes as the previous stage. In this configuration, considering a discrete function f(x)
which has a length of N bytes, the first N/2 wavelet coefficients are generated at the first stage, the
next N/4 coefficients at the next stage and so on. A schematic diagram of the DWT decomposition
is shown in Fig. 2. In each processing stage, the input signal is split, then filtered by low-pass
g(n), and high-pass h(n) filters, then downsampled. The result of the downsampled, high-pass fil-
ter operations are the wavelet coefficients at a particular scale. The detail signal Dyj{f(x)} at the
resolution 2 contains the difference of information between Ayj+1{f(x)} and A»j{f(x)}. The result
of the downsampled, low-pass filter operations is the approximation of the input function at a par-
ticular scale, and is sent to the next processing stage. The separable two-dimensional case is a

straightforward extension of this 1-D case.
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FIGURE 2. Forward DWT decomposition in 1-D.

The function used to approximate a signal at a lower resolution is called a scaling function.
The approximation of a signal f(x) at resolution 2/ can be viewed as a convolution between the
signal f{x) and a scaling function ¢(x) followed by a uniform sampling at the rate of 2. From Fig.
2, it can be seen that a signal is approximated at a lower resolution by passing it through a series

of low-pass filters and can be described in the frequency domain by,

O(0) = F {60} = HG(%), ®
k=1

where ¢(x) is the scaling function in the spatial domain. The approximation of a signal f{x) at res-

olution 2/ was written as

AZF@Y = [fx) e, (=270 ax, @

where ¢,j represents the scaling function at the resolution 2. In two dimensions Eq. (2) can be

written as



AyF N} = [[fe e, =270 0,0 -27y) dxdy, ©)

if a separable scaling function is used. The multiresolution approximation is completely charac-
terized by the scaling function. In addition, it is possible to chose scaling functions with good

localization properties in both the frequency and input domains.

2.3 Synthesis of image to higher resolution

Similar to the forward DWT, the inverse DWT can be implemented in an efficient manner by
passing a signal through identically structured processing stages where each successive stage pro-
cesses twice the number of bytes as the previous stage. A schematic diagram of the inverse DWT

synthesis is shown in Fig. 3.

In each processing stage the input from the previous stage and the wavelet coefficients at that
stage are upsampled with zeros then passed through separate filters. The filter convolved with the
wavelet coefficients is a high-pass filter represented as h(n), and the filter convolved with samples
from the previous stage is represented as g(n), and are related to the filters h(n) and g(n) as
described in the next section. The output of the filters are then summed together and sent to the

next processing stage.
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FIGURE 3. Inverse discrete WT reconstruction




To synthesize a low-resolution image to a higher resolution, an image is simply passed
through the processing blocks in Fig. 3. However, in our work the wavelet coefficients were set to
zero. Therefore, it is important that the reduced-resolution image contain adequate information so

the higher-resolution image will be represented accurately.

2.4 Wavelet filter banks

2.4.1 Filters for orthogonal wavelets

Filters in the forward DWT that allow an orthogonal representation of a signal have mirror-
image symmetry about the frequency @ = 7/2 in the frequency domain, and are referred to as
quadrature mirror filters (QMFS).10 The frequency domain relationship of QMFs is represented in
Fig. 4. In the spatial domain, this can be described by

h(n) = (-1)* 'g(p-1-n), @

where p is the length of the filter. For example, if the low-pass filter had coefficients g(n) = {c0,
cl, ¢2, c3), then the high-pass filter would have coefficients h(n) = {-¢3, c2, -cl, c0}.

A G(w) H(w)

} o
0 /2 n

FIGURE 4. Frequency response relationship of QMFs

Aliasing resulting from downsampling in the DWT can be perfectly cancelled by properly
choosing the filter coefficients in the inverse DWT.! For perfect reconstruction, filters used in the

inverse transform, g(n) and h(n) must satisfy,



h(n) = (-1)"g(p—-1-n)and,g(n) =g(p—-1-n). ©)

For example, if g(n) = {c0, cl1, c2, c3}, then g(n) = {c3, 2, cl, c0}, and h(n) = {c0, -cl, c2,-c3}.

The design of compact support, orthonormal, QMFs leads to wavelets developed by
Daubechies.!? While the QMFs have useful properties and lead to compactly supported wavelets,
they cannot be finite impulse response (FIR) linear phase filters except for filters associated with
the Haar wavelet.!3:14 Smith and Barnwell showed that FIR QMFs could be made nearly linear
phase and called them conjugate quadrature filters (CQFs),15 and Lawton!® showed that FIR fil-
ters could be made to have linear phase if the filter coefficients were complex.

2.4.2 Filters for biorthogonal wavelets

The linear phase constraint corresponding to symmetrical wavelets can be maintained by
relaxing the orthonormality constraint and by using biorthogonal bases. 111718 The introduction
of biorthogonal filters produces perfect reconstruction-FIR linear phase filters at the expense of
having different but related high- and low-pass filters (and wavelets) in the forward and inverse

DWT. Biorthogonal wavelets can be shown to have filters that obey,

B(n) = (-1)**'g(p-1-n)and, g(n) = (-1)"" 'h(p-1-n). ©

In other words, the low-pass filter in the forward transform and the high-pass filter in the inverse
transform form a QME. And, the low-pass filter in the inverse transform and the high-pass filter in

the forward transform form a QMF. But the low- and high-pass filters in the forward or reverse
transform do not form a QMF.

Like orthogonal wavelets, biorthogonal wavelet coefficients are produced from a combination
of high- and low-pass filtering. The difference between the orthogonal and biorthogonal case is
that the scaling functions and wavelets in the inverse and forward transform are different. The

scaling functions are related to the low-pass filters of the forward and inverse DWT in the fre-
quency domain by,




o) = [[6(5) and @ (@) = [[G(5) - )
k=1 2 k=1 2

where ®(), and ®(w) are the Fourier transforms of the scaling functions associated with the for-

ward and inverse DWT respectively, and ¢(x) is the inverse Fourier transform of ®(w).

3.0 Selection Of Filters For Wavelet Representation

Because we used an approximated image for further processing, the choice of filter bank for
wavelet representation can be crucial. We evaluated filters using a similar technique as in Ref. 8 to
select filters for image compression. There, impulse and step responses of multiple processing
stages were measured. Parameters such as sidelobe strength, and minimization of shift variance
were made on many analysis-synthesis sets of wavelet filters. Using this technique wavelet filters
for image compression were selected based on traditional measurements rather than an ad hoc
method. Although we tried a limited number of filter banks, our approach provided some insight

into the level of performance we can expect from our analysis-synthesis system.

We used the impulse response of the system in Fig. 1 to evaluate wavelet filters. The square of
the autocorrelation was used as the input to the inverse DWT to reflect the optical application; in
an optical correlator, it is the square of the correlation response that is measured. We evaluated fil-
ter banks by measuring parameters such as the signal-to-noise ratio (SNR), peak-to-correlation

energy (PCE), and shift variance, at the output of the system.

We evaluated wavelet filters in 1-D using a 256-byte length vector with an impulse as the
input signal. The input vector was approximated at 1/4 the original resolution using the wavelet
transform with a 64-byte length vector. Then, we performed the autocorrelation of the 64 length
approximation of an impulse using a binary phase-only filter (BPOF). In our BPOF, the amplitude
was set to unity, and the phase value was set to +1 depending on the sign of the real part of the
approximated impulse’s Fourier transform. Following the autocorrelation, we synthesized the
autocorrelation result to a 256-byte length vector using the inverse wavelet transform. Because
the wavelet transform is not shift invariant, we produced all impulse responses and calculated the

total mean-squared error by summing the variances of the responses at each point.
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We used a limited number of wavelet filters in our evaluation to give insight into our
approach, Specifically, we used Daubechies biorthogonal symmetric (DBS) wavelets!? which
produced the results in Table 1.

TABLE 1. Wavelet Filter Parameters for Impulse Response using a BPOF

Square of
Correlation MSE of shift
Wavelet Height (avg.) | SNR PCE variance x 104
DBS 1,1 45.6 0.84 13.5 1.51
DBS 1.3 56.0 0.88 15.8 1.62
DBS 1,5 83.1 1.30 15.8 1.61
DBS 2.2 240 3.88 13.7 8.00
DBS 24 354 0.55 135 2.76
DBS 26 130 2.17 13.5 2.60
DBS 28 55.2 0.86 14.6 1.62
DBS 3,1 471 7.46 14.0 20.5
DBS 33 193 3.02 14.1 5.01
DBS 3,5 118 1.84 15.2 2.69
DBS 3,7 194 3.04 134 5.25
DBS 3,9 104 1.63 15.7 4.62
DBS 44 26.2 0.41 12.8 1.38
DBS 5,5 38.2 0.60 15.5 1.27

From the data in Table 1, the impulse response due to different wavelets varied considerably
for some parameters, but not for others. For example, the average of the squares of the autocorre-
lation heights due to the fourteen wavelet filters varied from a maximum of 477 to a minimum of
26.2, for a ratio of 18.2. The SNR varied by the same ratio. The PCE and MSE of the shift vari-

ance had ratios of maximum to minimum of 1.23, and 16.1 respectively.

The DBS(3,1) wavelet filters clearly produced the largest values for the autocorrelation height
and SNR. We didn’t consider the PCE values in filter selection because they were similar.
Although the shift invariance was significantly higher for the DBS(3,1) wavelet filters than others
we still considered it for additional experiments because the SNR was so high.

11




To better understand the effect of the DBS(3,1) wavelet filters, we examined the frequency
response of the system in Fig. 1 when an impulse was used as an input. The impulse was autocor-
related with a BPOF at 64-byte length, then squared before being synthesized to a 256-byte
length. The magnitude of the frequency response of the impulse response of the system is shown

in Fig. 5. It can be seen that significant attenuation of the higher frequencies occurred.

o
(9}
T
1

FIGURE 5. Impulse response of DBS(3,1) wavelet filters at output of system in Fig. 1, in
frequency domain

4.0 Experimental Results

We compared correlation results performed on 256 x 256 pixel images at full resolution, with
those performed on 64 x 64 images approximated and synthesized with the DBS(3,1) wavelet.
Because the wavelet transform is not shift invariant, there should be 16 different responses. These
come from product of two levels of decomposition ([2 responses] 2 levels), and two dimensions.
Had there been three levels of decomposition, there would have been 64 different responses. We
considered the image in Fig. 6 for autocorrelation experiments and tabulated the results in Table 2.
We only showed the results for one relative position of the input and output images, but the results

are similar for other relative positions.

Although the correlation height decreased when the image was processed at a lower resolu-
tion, the SNR increased, and the result appeared visually useful for object identification. The
decrease in correlation height and increase in SNR can be explained by frequencies contributing

to noise with little signal being attenuated.!? Although the SNR has significantly increased, it still

12



is below the maximum obtained with a matched filter at full resolution which is 86.0 db. The cor-
relation height decrease was due to the attenuation of energy as indicated in Fig. 5. The autocorre-
lation response of full and 1/4 resolution processing are shown in Figs. 7(a) and (b) respectively.
Note that both results are at 256 x 256 pixel resolution.

TABLE 2. Comparison of Results for 256 x 256, an 64 x 64 Pixel

Correlations
256 x 256 64 x 64
resolution resolution
Correlation height 57.5db 40.5 db
SNR 9.3db 53.6db
PCE 1.64 0.03
Discrimination 0.89 0.13

The PCE is a measure of sharpness of the correlation peak and is the ratio of the energy in the
correlation peak to the energy in the input image.zo The PCE decreased when images were
approximated at a lower resolution before for autocorrelation. This was due to the decrease in the

correlation peak, which was due to the attenuation of energy at some spatial frequencies.

We also compared the discrimination between two similar objects shown in Figs. 6 and 8
respectively. We calculated the discrimination between the two figures as the difference between
the correlation peaks obtained with Figs. 6 and 8, divided by the correlation peak obtained with
Fig. 6. In all cases, we used the BPOF of the object in Fig. 6. The discrimination decreased when

images where processed at a lower resolution.

To gain insight into whether the discrimination is useful for pattern recognition, we then used
an image with both types of objects present. We used the image in Fig. 9 and cross-correlated it
with a BPOF made from the image in Fig. 6. Figure 9 shows three objects, two of which are in the
same class. Fig. 10(a) and (b) shows the resulting cross-correlation when processed at full resolu-
tion and 1/4 resolution respectively. One performance parameter we used was the signal-to-clutter
ratio (S/C), which is the ratio of the lowest correlation peak of an in-class object, to the highest
peak of an out-of-class object. The other measure was the spread of the in-class correlation peaks,

which was the ratio of the maximum to minimum correlation peaks of the in-class objects. For the

13




image processed at full resolution, the S/C was 5.2db, and the in-class spread was 0.12db. When
the image was processed at 1/4 resolution, the in-class spread increased slightly to 0.17db, and the
S/C decreased to 2.3db indicating a decrease in discrimination ability. In addition, the cross-corre-
lation with the background significantly increased. The background, primarily the region on the
left in Fig. 9, produced a larger correlation than the out-of-class plane. If the background was
taken into consideration, then the S/C had decreased to 0.8db.

5.0 Discussion and conclusion

We showed that we could recognize objects at 1/4 resolution using the wavelet representation
and BPOF correlation filters. Using our approach, we avoided cross-correlating an image multiple
times and passing information between levels of an image representation. In our experiments, the
SNR increased, while discrimination and PCE decreased for the wavelet filters chosen. Although
discrimination decreased, it appeared that the results were useful for object recognition. Different
wavelet filters gave different autocorrelation and SNR values for their impulse response; there-
fore, the choice of wavelet filters could be significant in processing an image at lower resolutions.
Although this study gives insight into the performance that may be expected when performing
pattern recognition as described here, we need to theoretically establish the potential of this

approach.
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FIGURE 9. 256 x 256 pixel image used in cross-correlation experiments.
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MISSION
OF
ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.




